

ASSET MANAGEMENT

2017

Overview of the NZ Electricity Sector

5 main generators producing 95% of NZ electricity

+

Other smaller and independent generators

(8 connected to the grid)

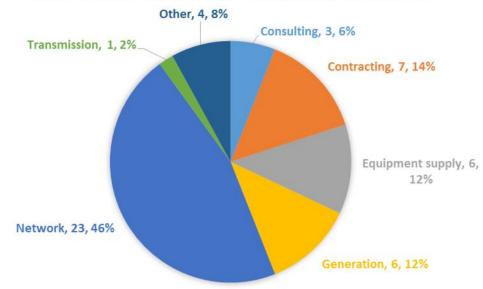
1 grid owner

Transpower

29 regional distribution networks

22 retailers

Many of which also generate electricity



EEA Services

Health & Safety
Asset Management Leadership
Good Practice Guides
Standards & Regulations
Professional development
Conferences & Forums

CORPORATE MEMBERS - BUSINESS CATEGORY

Guide Development

Steering Group

- Mike Whaley (Powerco)
- Norman Geary (Meridian Energy)
- Johan Hendriks (Alpine Energy)
- Andrew Renton (Transpower)

Note: Led from an engineering and AM team

Requirements

- Scalable
- ESI specific
- Generic and flexible for different users (i.e. distribution, generation etc)
- Practical to use
- Address cultural as well as technical issues

Guide Development

Objectives

Assist electricity businesses to develop processes which:

- Provide designs that are safe
- Document design decisions
- Continuously improve the safety of designs
- Meet statutory obligations

Targeted to operational and maintenance workers, construction managers, project managers, safety professionals, executives, designers and engineers.

Guide Development

Development Process

- Scoping (Jun 2015)
- Tender process (Nov 2015)
- Guide drafting (Nov April 2016)
- Consultation Workshop (March 2016)
- Industry consultation on draft (April July 2016)
- Post Consultation review (July Sep 2016)
- Approval (Sep 2016)
- Publication (Oct 2016)

Guide Structure

Part A: An introduction

Part B: A general overview of SiD

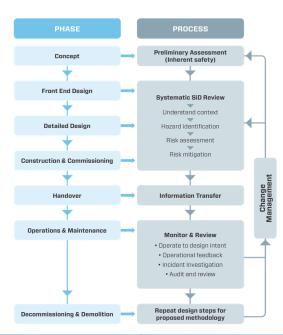
Part C: SiD Framework

Part D: Lifting Performance in SiD

Part E: Supporting Information (Appendices)

Sid Framework – Enablers

- Leadership
- Awareness and Capability
- Design Standards
- Assurance


Activity	Board	Executive Leaders	Technical (engineering and safety)	Project Managers
Routinely ask for progress/performance/inclusion of SiD				
Hold the executive accountable for maintaining their obligations				
Ensure adequate funding and support is available for SiD requirements				
Incorporate adequate technical approval into business case approval processes				
Clearly define SiD obligations for outsourced providers				
Provide adequate resources to undertake SiD				
Establish KPIs and objectives for SiD				
Ensure assurance programmes (audits etc.) include SiD				
Maintain training and capability of teams for SiD				
Approve design changes based on SiD requirements				

SiD Framework - Process

- Preliminary Assessment
- Systematic Review
- Information Transfer
- Monitor and Review
- Change Management
- Decommissioning and Demolition

Lifting Performance

Implementation Questions

- 1) Who should be the overall owner of the SiD process?
- 2) Who should lead the development of the SiD process?
- 3) Who should be the custodian of the SiD process?
- 4) How should effectiveness of SiD be measured?
- 5) What are the linkages with other processes?
- 6) What structural boundaries does it cross?
- 7) Who will have authority over critical decisions about safety in design?

Tools

Routine Tools

Inherent Safety Assessment
Field Checklist
Hazard Identification Review (HAZID)
HAZID Guidewords
Risk Registers

Specialist Tools

Hazard and operability study
Safety Integrity level review
Failure modes and effects analysis
CHAIR study
Bow tie Review
Human factors review

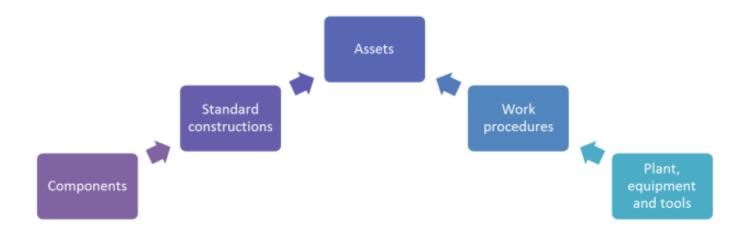
Running a Successful Review

Design Sections (Nodes)

Attendees

Facilitation

Information availability


Clear Terms of Reference

Time Use

Case Studies

Chain of Safety in Design

Hazard description	Design element type	Example design element	Applicable?	Example explanation for HAZID
Falling while accessing a pole from pole steps	Components	Pole step design	Yes	Pole step design can change the pole step strength, quality, grip and reduce exposed sharp edges
	Standard constructions	Pole standard construction	Yes	Pole steps could be eliminated, the spacing could be reduced or positions optimised for accessing pole equipment
	Assets	Line design	Yes	The overall design of the line will influence the methods which can be used to access structures.
	Work procedures	Pole climbing procedure	Yes	The procedure may influence the component and standard construction design. It specifies whether the pole steps should be used for specific tasks, within which conditions and with which controls.
	Plant, equipment, tools	N/A	No	Use of a bucket truck would eliminate this hazard however that is a work procedure
Pole failing	Components	Pole design	Yes	Applying appropriate assessment during product approval and quality control during procurement and logistics
	Standard constructions	Pole standard construction	No	The selection of the appropriate pole size is determined in the line design
	Assets	Line design	Yes	Ensuring that pole maximum loads are not exceeded
	Work procedures	Stringing procedure	Yes	Ensuring that pole working loads are not exceeded during construction
	Plant, equipment, tools	N/A	No	

Example HAZID Elements

Questions and Comments?

Guide available for download from the EEA website

